Complete solution set of the inequality $\left( {{{\sec }^{ - 1}}\,x - 4} \right)\left( {{{\sec }^{ 1}}\,x - 1} \right)\left( {{{\sec }^{ - 1}}\,x - 2} \right) \ge 0$ is
$\left[ {\sec 2\,,\,\sec \,1} \right]$
$\left[ {\sec 1\,,\,\sec \,2} \right]\, \cup \,\left[ {\sec \,4\,,\,\infty } \right)$
$\left( { - \infty \,,\,\sec \,2} \right]\, \cup \,\left[ {\sec \,1\,,\,\infty } \right)$
$\left( { - \infty \,,\,\sec \,4} \right]\, \cup \,\left[ {\sec \,2\,,\,\infty } \right)$
Consider the cubic equation $x^3+c x^2+b x+c=0$ where $a, b, c$ are real numbers. Which of the following statements is correct?
If $x+\frac{1}{x}=a, x^2+\frac{1}{x^3}=b$, then $x^3+\frac{1}{x^2}$ is
If $\alpha ,\beta$ are the roots of $x^2 -ax + b = 0$ and if $\alpha^n + \beta^n = V_n$, then -
Suppose the quadratic polynomial $p(x)=a x^2+b x+c$ has positive coefficient $a, b, c$ such that $b-a=c-b$. If $p(x)=0$ has integer roots $\alpha$ and $\beta$ then what could be the possible value of $\alpha+\beta+\alpha \beta$ if $0 \leq \alpha+\beta+\alpha \beta \leq 8$
Let $p, q$ be integers and let $\alpha, \beta$ be the roots of the equation, $x^2-x-1=0$, where $\alpha \neq \beta$. For $n=0,1,2, \ldots$, let $a_n=$ $p \alpha^n+q \beta^n$.
$FACT$ : If $a$ and $b$ are rational numbers and $a+b \sqrt{5}=0$, then $a=0=b$.
($1$) $a_{12}=$
$[A]$ $a_{11}-a_{10}$ $[B]$ $a_{11}+a_{10}$ $[C]$ $2 a_{11}+a_{10}$ $[D]$ $a_{11}+2 a_{10}$
($2$) If $a_4=28$, then $p+2 q=$
$[A] 21$ $[B] 14$ $[C] 7$ $[D] 12$
answer the quetion ($1$) and ($2$)