Complete solution set of the inequality $\left( {{{\sec }^{ - 1}}\,x - 4} \right)\left( {{{\sec }^{ 1}}\,x - 1} \right)\left( {{{\sec }^{ - 1}}\,x - 2} \right) \ge 0$ is

  • A

    $\left[ {\sec 2\,,\,\sec \,1} \right]$

  • B

    $\left[ {\sec 1\,,\,\sec \,2} \right]\, \cup \,\left[ {\sec \,4\,,\,\infty } \right)$

  • C

    $\left( { - \infty \,,\,\sec \,2} \right]\, \cup \,\left[ {\sec \,1\,,\,\infty } \right)$

  • D

    $\left( { - \infty \,,\,\sec \,4} \right]\, \cup \,\left[ {\sec \,2\,,\,\infty } \right)$

Similar Questions

If $\alpha ,\beta ,\gamma $are the roots of the equation ${x^3} + x + 1 = 0$, then the value of ${\alpha ^3}{\beta ^3}{\gamma ^3}$

The number of distinct real roots of the equation $x ^{7}-7 x -2=0$ is

  • [JEE MAIN 2022]

If $x$ is real and $k = \frac{{{x^2} - x + 1}}{{{x^2} + x + 1}},$ then

The maximum value $M$ of $3^x+5^x-9^x+15^x-25^x$, as $x$ varies over reals, satisfies

  • [KVPY 2012]

A man standing on a railway platform noticed that a train took $21\, s$ to cross the platform (this means the time elapsed from the moment the engine enters the platform till the last compartment leaves the platform) which is $88\,m$ long, and that it took $9 s$ to pass him. Assuming that the train was moving with uniform speed, what is the length of the train in meters?

  • [KVPY 2015]