Complete solution set of the inequality $\left( {{{\sec }^{ - 1}}\,x - 4} \right)\left( {{{\sec }^{ 1}}\,x - 1} \right)\left( {{{\sec }^{ - 1}}\,x - 2} \right) \ge 0$ is

  • A

    $\left[ {\sec 2\,,\,\sec \,1} \right]$

  • B

    $\left[ {\sec 1\,,\,\sec \,2} \right]\, \cup \,\left[ {\sec \,4\,,\,\infty } \right)$

  • C

    $\left( { - \infty \,,\,\sec \,2} \right]\, \cup \,\left[ {\sec \,1\,,\,\infty } \right)$

  • D

    $\left( { - \infty \,,\,\sec \,4} \right]\, \cup \,\left[ {\sec \,2\,,\,\infty } \right)$

Similar Questions

Number of natural solutions of the equation $x_1 + x_2 = 100$ , such that $x_1$ and $x_2$ are not multiple of $5$

If $|{x^2} - x - 6| = x + 2$, then the values of $x$ are

If the set of all $a \in R$, for which the equation $2 x^2+$ $(a-5) x+15=3 a$ has no real root, is the interval $(\alpha, \beta)$, and $X=\{x \in Z: \alpha < x < \beta\}$, then $\sum_{x \in X} x^2$ is equal to

  • [JEE MAIN 2025]

The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is

The number of real roots of the equation, $\mathrm{e}^{4 \mathrm{x}}+\mathrm{e}^{3 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{\mathrm{x}}+1=0$ is 

  • [JEE MAIN 2020]